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ABSTRACT. In this work, we investigate the class
of residually linear groups and survey the litera-
ture for considerable group classes that are included
in. Various properties and characterizations of this
class are provided and the relationship with residual
finiteness is studied.
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1. INTRODUCTION

Recall that a group is called linear over a field k provided
that, it is isomorphic to a subgroup of the general linear
group GLy (k) for some n € N.

The Peter-Weyl Theorem [17] concerns a compact Lie group
G, one of its components asserts that:

(1) Ve#tgeG, Joerep(G) | o(g) #1.

One of the direct results of this theorem is linearity of G: in
fact, claim (1) implies that any compact Lie group admits a
finite dimensional faithful representation [4, Corollary 4.4,
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page 34]. The abstraction of the above condition (1) yields
the property of residual linearity. As not all groups can be
faithfully represented by matrices acting on finite dimen-
sional vector spaces, and hence unveiling essential features
and symmetries hidden within the group’s structure; resid-
ual linearity addresses this limitation by approximating an
arbitrary group by linear groups. This property provides
connections between the abstract nature of group theory
and the concrete realm of linear algebra.

Residual properties play prominent roles in discrete group
theory in understanding groups’ intrinsic properties, such
as the theorems of Magnus [11] and Malcev [12] affirm-
ing residual nilpotence of free groups and generalizing this
result to free products, and the work [9] of Gruenberg
in 1955, on residual properties of infinite soluble groups.
While many residual properties have been intensively stud-
ied, e.g., residual finiteness [2, 8, 11, 14], residual smallness
[16]; a probably less attention is devoted to explore the con-
cept of residual linearity, where we find only few references
treating this topic on itself, this shows up mainly in the
work [13] of Menal in 1978, in order to determine when a
residually linear group is residually finite. He proved that
residual linearity of a nilpotent group G along with the con-
dition of having finitely generated center and commutator
subgroups, implies residual finiteness of G.

By the very mentioned relationship of residual linear-
ity and Peter-Weyl Theorem, this study sheds light on a
potential application to the Tannaka-Krein duality for ab-
stract groups especially via the Hopf algebra of represen-
tative functions approach, see [4] for a nice exposition.

Throughout the sequel, if not mentioned otherwise, the
base field, denoted by k, is a fixed arbitrary one. rep(QG)
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will always denote the category of finite dimensional rep-
resentations of G over k, namely the category whose ob-
jects are homomorphisms p : G — GL(V) of groups, from
G to the group of automorphisms of a finite dimensional
k—vector space V' (we write GLy, (V) to indicate the dimen-
sion n of V).

2. RESIDUAL LINEARITY

In what follows, we study the structure, stability prop-
erties: under taking subgroups, direct products, projective
limits, etc, and some characterizations of the class of resid-
ually linear groups. We investigate the relationship with
residual finiteness and illustrate the situation with exam-
ples from the literature, that show what some considerable
group classes are included in this class and what are not.

Definition 2.1. Let G be an abstract group with neutral
element e. G is called residually linear (over k), provided
that for every e # g € G, there exists a finite dimensional
representation p € rep(G) of G over k, such that p(g) # 1.

Note that this notion depends on the base field, some
groups are residually linear over any arbitrary field and
some others are only over specific ones, or over no one. For
example, (Q,+) is residually linear over R, but not over
finite fields, as it does not have any proper subgroup of
finite index. In general, divisible groups can not be resid-
ually linear over any finite field, in light of Remark 2.21.

Example 2.2. The underlying multiplicative group kK* of
k is residually linear, since k* ~ GLy(k). In particular,
Q*,R* and C* are residually linear, over Q, R and C, re-
spectively.

Proposition 2.3. FEvery linear group is residually linear
(over the same field).
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Proof. Immediate as any linear group admits a finite di-
mensional faithful representation. O

Theorem 2.4. Let G be a group. The following statements
are equivalent.

(a) G is residually linear.

(b) Ig = {e}.

(¢) For any elements g,h € G, such that g # h, there
exists a finite dimensional representation p € rep(G),

such that p(g) # p(h).
(d) Foreverye # g € G, there exists a normal subgroup

Ny <G, such that g ¢ Ny and G /Ny is linear.
(e) N N ={e}, where N ={N <G, G/N is linear}.
NeN
To prove the above theorem, we will need the following
two lemmas.

Lemma 2.5. Let G be an abstract group and set Ig :=

(\ ker(p). Then
pErep(G)

(a) Ig is a normal subgroup of G.

(b) G/1g is residually linear.

Proof. (a) Straightforward.
(b) Let g € G/Ig, non neutral. Then g € G\ Ig. By defi-
nition of I, there exists p, € rep(G), such that p,(g) # 1.
Since I C ker(py), there exists, by the universal property
of quotient groups, a morphism p; of groups, such that
Py(9) = pg(g). This finishes the proof. O

Lemma 2.6. Let G be a group and N < G. If G/N is
residually linear, then Ig C N.

Proof. That is trivial from the definition of Iy in the above
Lemma 2.5. O

Now, we prove Theorem 2.4.
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Proof. (a) < (b) This holds by the universal property of
quotient groups, using Lemma 2.5.

(a) < (c) Observe that g # h < gh™! # e, then apply the
previous equivalence.

(d) = (a) Let e # g € G, pick any finite dimensional
faithful representation of G/N, and compose it with the
canonical projection.

(a) = (d) For every e # g € G, consider the normal sub-
group N, = ker(pgy), for some pg € rep(G) with py(g) # 1,
then the result holds by the universal property of quotient
groups related to py.

(d) = (e) Let e #£ g € NﬂNN, there exists Ny « G with
€
g ¢ Ny and G/Ny is linear. But N, € N, namely g € N,

which is a contradiction. Therefore, (e) holds.

(e) = (d) Assume that there is e # g € G, such that for
any H <G with g ¢ H and G/H is not linear. So, g € N
for any N < G, such that G/N is linear, but such latter
normal subgroups have trivial intersection by hypothesis,
then g = e, hence a contradiction. Thus, (d) holds. O

Corollary 2.7. Let G be a group such that for every e #*
g € G, there exists Ny < G, such that g ¢ Ny. If G/H s
residually linear for any proper normal subgroup H of G,
then G is residually linear.

Proof. Assume G is not residually linear. Let e # g €
Ig, there exists N, # g, such that N, < G. But G/N,
being residually linear by assumption implies, by Lemma
2.6, that I € Ny, which is a contradiction. Thus, G is
residually linear. ([

Theorem 2.8. Let (G;)ier be a family of groups. The
following statements are equivalent.

(a) G is residually linear for every i € I.
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(b) The direct product || G is a residually linear group.
icl

Proof. (a) = (b) Let © = (x;) € G = [[ Gi be a non
el
neutral element of G, there exists eq, # i, € Gy, for
some 19 € I. But Gj, is residually linear, hence there exists
a representation pg,, € rep(Gj,) on a finite dimensional
k—vector space V, such that ps,, (z4,) # 1. Consider the
morphism pg, T : G — GL, (V) of groups, where 7 is
the canonical projection on G;,. Then, Pz T IS a finite
dimensional representation of G, and py, 7(z) # 1.
(b) = (a) This holds since every representation of [[ G,
i€l
composed with the canonical injection of G; in [] Gy, is a
el
representation of Gj. U

Corollary 2.9. Let (G;)icr be a family of groups. Then,
Ie, =1 Ia.-

iel el

Proof. Let m; : G; — G;/Iq, be the canonical projection,
for every ¢ € I, and consider m = [] m;. Then, 7 is an epi-

iel
morphism of groups, and ker(7) = [] ker(m;) = [] Ig,. So
iel el

[1Gi/ 1l Ia, ~ [1 (Gi/Ig,). By Lemma 2.5 (b) and Theo-
iel el icl
rem 2.8, [[ Gi/ ] Ig, is residually linear. The Lemma 2.6
iel el
implies that Iy ¢, € [] Ia;-
i€l i€l
Let us now prove the other inclusion [] Ig, C Iy ¢, Let
i€l icl
xz € |[ Ig,, then z = (z;) with z; € Ig, for every i € I.
i€l
We can write x as © = [] (z4;) (component-wise product),
Jel
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where x;; = x; if j = 4 and z;; = e, otherwise (eq, des-

ignates the neutral element of G;). Since every represen-

tation of ] G;, composed with the canonical injection ¢,
el

is a representation of Gj;, for every i € I; for every p €

rep( I1 Gi>, we get p(x) = P( [I (‘TU)) = };[I (p L(Il)> -

il jel
1,s0 [[ Ig, C Ity @, and this completes the proof. O
el i€l

Remark 2.10. The obtainment of a residually linear group
from a non residually linear group as mentioned in Lemma
2.5 (b), which occurred by "deleting” the non residually lin-
ear part, can be stated more generally as follows. Let G and
H be two groups such that G is residually linear and H not.
Then, G x H 1is not residually linear by Theorem 2.8, but
(G x H)/H' is so, where H = {(eg,h),h € H}. Indeed,
H <«(Gx H) and (Gx H)/H ~G.

Corollary 2.11. Let (G;)ier be a family of groups. Then,
the direct sum @ G; is a residually linear group if and only
icl
if G; is residually linear for every i € I.
Proof. The direct sum is a subgroup of the direct product,
hence the result holds by Theorem 2.8.
Conversely, this is immediate as every G; is a subgroup
of P Gi. O
el
Corollary 2.12. The projective limit of a projective sys-
tem of residually linear groups is a residually linear group.

Proof. Let (G;)icr be a projective system of residually lin-
ear groups. By construction, the projective limit group

G= @Gi is a subgroup of [] G;. Hence, the result holds
i€l
by Theorem 2.8. U
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Corollary 2.13. Let G be a group, N1<G and No<G, such
that G/N1 and G /Ny are residually linear. Then, G/(NyN
Ny) is residually linear.

Proof. Note that G/(N1NN3) can be identified with a sub-
group of G/Nj x G /N3, then use Theorem 2.8. O

Corollary 2.14. Let a: G — Q and 8 : H — @ be two
monomorphisms of groups, such that Q s residually linear.
Then, the fiber product G xg H is residually linear.

Proof. Immediate from Theorem 2.8. O

Theorem 2.15. Let G be a group. The following state-
ments are equivalent.

(a) G is residually linear.
(b) There exists a family of linear groups (G;)ier, such
that G is a subdirect product of | Gi.
iel
Proof. (a) = (b) G residually linear implies that for every
e # x € @G, there exists a representation p, of G on a
finite dimensional k—vector space V;, such that p;(x) #

1. Let p= [] pgand ¢t : G — ][ G be the
zeG\{e} zeG\{e}

canonical injection, then p ¢+ : G — [[ GL(V;) is
zeG\{e}

injective, hence G is isomorphic to a subgroup of the direct
product [] GL(V;) of linear groups.

z€G\{e}
(b) = (a) This holds by Proposition 2.3 and Theorem 2.8,
since G is a subgroup of a residually linear group. OJ

We resume some considerable group classes that are in-
cluded in the class of residually linear groups.

Example 2.16. Braid groups are residually linear. In fact,
they are linear [10].



Residually linear groups

Proposition 2.17. Every finite group is residually linear.

Proof. Every finite group is in fact linear (over any field)
by the Cayley’s Theorem [1, Theorem 7.1.3, page 195] and
the standard embedding of any symmetric group S, into
GL, (k). O

Recall that a group G is called residually finite provided
that for every e # g € G, there exists a morphism of groups:
oy : G — H, such that H is finite and g does not belong
to the kernel of ay.

Proposition 2.18. Fvery residually finite group is resid-
ually linear.

Proof. In fact, for every eq # g € G, there exists a mor-
phism hy : G — H of groups, with H finite, such that
hg(g) # en. But H is residually linear by Proposition 2.17,
there exists p € rep(H), such that p(hg(g)) # 1. Hence,
phg € 1ep(G) and phy(g) # 1. O

Example 2.19. Free, cyclic, polycyclic, profinite, super-
solvable, finitely generated nilpotent and automata groups
are all residually linear groups. In fact, these groups are
residually finite [11].

Proposition 2.20. Let G be a finitely generated group.
The following statements are equivalent.

(a) G is residually linear.
(b) G is residually finite.

Proof. (b) = (a) This is always true without assuming G
finitely generated by Proposition 2.18.

(a) = (b) For every e # g € G, there exists g ¢ Ny <G
such that G /N, is linear, by Theorem 2.4. But G is finitely
generated, so G/Ny is a finitely generated linear group. By
Malcev [12], any finitely generated linear group is residually
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finite, and then residually linear. Hence, there exists a
morphism f, € rep(G/Ny) of groups, such that f,(g) # 1.
As required by considering the composite 7 f;, where 7 is
the canonical projection. 0

Remark 2.21. Let G be a group and k o finite field. The
following statements are equivalent.

(a) G is residually linear (over k).

(b) G is residually finite.

It suffices to show that (a) = (b), which is immediate as
GL, (k) is finite for every n € N*.

Assume moreover that any proper subgroup of G is of infi-
nite index. Then, the following statements are equivalent.

(a) G is residually linear.

(b) G is linear.

(¢) G is residually finite.

(d) G is finite.
In particular, if G is infinite, then its Hopf algebra of rep-
resentative functions Ri(QG) is trivial, namely Rx(G) ~ k.

Remark 2.22. Let G be a finitely generated group. Then,
G/1q is residually finite by Proposition 2.20 and Lemma
2.5 (b).

The group of automorphisms of a finitely generated resid-
ually finite group is residually finite [2]. The same result
holds for residually linear groups.

Corollary 2.23. The group of automorphisms of a finitely
generated residually linear group is restdually linear.

Proof. Direct by combining Propositions 2.18 and 2.20. [

The next example shows that the properties ”residually
linear” and ”linear” coincide for some classes of groups.
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Example 2.24. Let G be an infinite simple group. Then,
the following statements are equivalent.

(a) G is residually linear.

(b) G is linear.

(¢) G admits a non trivial finite dimensional represen-
tation.

For example, algebraically closed groups, which are acyclic,
infinitely generated and simple due to Neumann [15].

However, generally, the class of residually linear groups
contains strictly that of linear groups, as shows the follow-
ing example.

Example 2.25. Let G be a free group of rank n > 3, then
the group Aut(G) of automorphisms of G is residually lin-
ear, but not linear. See also Example 2.27 (b). In fact, G
being free, it is residually finite, so Aut(G) is also residu-
ally finite since G is finitely generated [2], hence Aut(G) is
residually linear by Proposition 2.18. However, Aut(G) is
not linear by [7].

Now we give some examples of non residually linear
groups.

Example 2.26. Every group with no nontrivial represen-
tations is a non residually linear group, see [3] for such
groups, called counter-linear. In particular, binate groups
and the automorphisms groups of de la Harp and McDuff
[5] are acyclic non residually linear groups.

The above groups are having trivial Hopf algebras of rep-
resentative functions, namely isomorphic to k.

For finitely generated and (co-)Hopfian groups, the fol-
lowing examples show that these classes are not comparable
with that of residually linear groups.
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Example 2.27.

(a) The Higman’s four generator, four relator group is
an infinite, finitely generated non residually linear
group, since it is counter-linear [3].

(b) The group (a,t | at* = a2) presented in [6] as the
first example of a non-linear residually finite 1-related
group is a finitely generated residually linear group.

(c) Any finitely generated abelian group is residually
linear. In fact, it is residually finite.

Example 2.28.

(a) By Malcev [12], every finitely generated residually
finite group is Hopfian, also every finitely generated
abelian group is known to be Hopfian. Thus, these
are examples of residually linear Hopfian groups.

(b) Free groups of infinite rank are neither Hopfian, nor
co-Hopfian, but these are residually linear.

If we call a subgroup H of a group G, a residually linear
subgroup of G provided that for any e # h € H, there
exists a finite dimensional representation p of GG, such that

p(h) # 1.

Proposition 2.29. Let G be a group and H a subgroup
of G. Then, H is a residually linear subgroup of G if and
only if I¢ N H = {e}.

Proof. Straightforward. O

Remark 2.30. Let G be a group and H a subgroup of G.

(a) If G is residually linear, then H is residually linear
both as a group and as a subgroup.
(b) There is a bijective correspondence between the sets:

{rep(H)} = {rep(lg x H)}.
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In fact, every finite dimensional representation of
Ie x H is a finite dimensional representation of
H, seen as a subgroup by the identification H —
Ig x H, h— (e, h).
Conversely, every representation p € rep(H), can

be extended to a representation p € rep(Ig x H)
as follows: p((a,h)) = p(h); that is, if (a,h),
(a/,1) € IgxH, thenp((a,h)(a’,h')) = p(ad’, k') =
p(ht') = p(h)p(h') = p(a, h)p(a’, K').

(¢) If H is residually linear as a subgroup of G, then it
1s residually linear as a group. In other words, we
have the following inclusion

Ig ClgNH.

The equality holds for example, if G is residually
linear, or more generally as shows the next result.

Proposition 2.31. Let H be a subgroup of a non residually
linear group G. Then, H is a residually linear group if and
only if it is so as a subgroup of Ig x H.

Proof. We identify H with {e} x H. Let e # h € H,
there exists p € rep(H), such that p(h) # 1. By Re-
mark 2.30 (b), p extends to p € rep(Ig x H) and we have
p((e;h)) = p(h) # 1.

The converse implication holds by Remark 2.30 (¢). Namely,
we have [H:I(IGxH)mH‘ ([

Remark 2.32. Let H be a subgroup of a group G and
g € G. Then, H is a residually linear subgroup of G if and
only if gHg™! is a residually linear subgroup of G.

Example 2.33. Let k =R.

(a) The additive group (R,+) is residually linear. In fact,
(R, +) is isomorphic to (R, x), which is residually linear
by Remark 2.30 (a), being a subgroup of (R*, x), treated in
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Ezample 2.2.

(b) The additive groups (Z,+) and (Q,+) are residually
linear, by Remark 2.30 (a), being subgroups of (R, +).

(¢) The additive group (C,+) is residually linear. In fact,
(C,+) ~ (R, +) x (R, +), then use Theorem 2.8.

Note that (Q,+), (R,+) and (C,+) are residually linear,
but not residually finite as they are divisible. In contrast,
(Z,+) is residually finite, it suffices to consider, for any
n, € Z*, the quotient Z/nZ for any integer n withn > |n|.

Remark 2.34. The class of residually linear groups is not
stable under taking quotients. For example, picking any
non residually linear group G, we know that G is isomor-
phic to a quotient of a free group F' (see e.g., [1, Corollary
7.10.14 (i) and (i7), page 215]), but F is residually linear.

Proposition 2.35. Let G be a residually linear group and

N <G, such that N C [ ker(py), for some finite dimen-
g¢N

sional representations py € rep(G), such that py(g) # 1,

for every g ¢ N. Then, G/N is residually linear.

Proof. For every g € G, such that 7w(g) is not identity,
where 7 is the canonical projection, we have g ¢ N. Now,
consider a corresponding p, € rep(G), then the result holds
by the universal property of quotient groups related to pg.

d

Theorem 2.36. Let G be a group. The following state-
ments are equivalent.
(a) G is residually linear.
(b) There exists a sequence
of subgroups, such that G;_1 is normal in G; and

G;i/Gi-1 is residually linear, for every 1 < i < n,
n € N*.
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To prove the above theorem, let us start first by proving
the following Lemma.

Lemma 2.37. Let G be a group and N < G. If N and
G/N are residually linear subgroup and quotient group re-
spectively. Then, G is residually linear.

Proof. N is a residually linear subgroup implies that N N
I¢ = {e}. G/N being residually linear, we have that I C
N. Finally, I = {e}, hence as required. O

Now, we prove Theorem 2.36.

Proof. (a) = (b) Assume that G is residually linear, then
{e} C G is the desired sequence.

(b)) = (a) Let {e} =G C---CG; C---C Gy =G be
a sequence, such that G;_; is normal in G; and G;/G;_1
is residually linear, for every i. We have Gy ~ G2/G1, so
G is residually linear. But G3/Gs is residually linear. By
Lemma 2.37, G is also residually linear. Hence, by the
same procedure progressively for the rest of the sequence,
we get that G is residually linear. O

Example 2.38. Any Noetherian solvable group is resid-
ually linear. In fact, as every solvable group has normal
series with abelian factor groups that are also finitely gen-
erated as we assume the group is Noetherian, then by The-
orem 2.36, this group must be residually linear as these
factor groups are as well, see Example 2.27 (c).

Let G be a group. For every e # g € G, denote by
degp(g) the minimal dimension of the representations p €
rep(G), satisfying p(g) # 1.

Definition 2.39. Let G be a group. Denote by degr(G),
and call residual linearity degree of G over k, the integer,
whenever existed, defined by

degr(G) = maxseq{degr(9)}
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If such integer does not exist, we put degr(G) = oo.

Theorem 2.40. A group G is residually linear if and only
if degp(G) < oo.

Proof. Immediate. O

Remark 2.41. We make the following observations:

(@)

Let G be a residually linear group and N a subgroup
of G. Denote by deg®(N) (resp., deg&(N)), the
resitdual linearity degree of N considered as a group
(resp., as a subgroup of G). Then, over k, we have
degR (N) < degB(N) < degh(G).

If G admits a faithful representation over a k—vector
space of dimension n, then, over k: degp(G) < n.
Hence, degr(G) < rdim(G), where rdim(G) stands
for the representation dimension of G, which is the
minimal dimension of a finite dimensional faith-
ful representation of G. Consequently, if G is any
group such that rdim(G) < oo, then G is residually
linear.

Let G be a group and n € N*. If G does not
have any representation on a vector space V', with
dim(V) =n. Then, degr(G) > n.

Let G be a group with degr(G) = n and N < G.
Then, degr(G/N) > n. It suffices to remark that
deg(g) > degp(g), for every g € G\ N.

Let G be a group and consider the function f : G —
N*, g — deggr(g). Then, G is residually linear if
and only if f is bounded. In this case, degr(G) is
its upper bound.
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